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MACH ~ E R  3.0 

By W i l l i a m  D. Deveikis and Robert W. Walker 

A wind-tunnel investigation w a s  made t o  determine heat-transfer 
dis t r ibut ions on three s t e e l  sphere-ellipsoid bodies w i t h  surface rough- 
nesses of 5,  100, and 200 microinches. Tests were conducted in  the Langley 
9- by &foot thermal structures tunnel a t  a Mach number of 3.0, free-stream 
Reynolds 
2.76 x 1 3 , and at a stagnation temperature of 6300 F. Pressure dis t r ibu-  
t i ons  were obtained a l so  on a fourth model. The r e su l t s  indicated that 
the combination of surface roughness and boundary-layer cooling tended t o  
promote ear ly  t r ans i t i on  and nu l l i fy  the advantages a t t r ibu tab le  t o  the 
blunt shape of the model f o r  reducing loca l  temperatures. 
t i on  between experimental heating r a t e s  and those calculated from laminar 
theory was achieved up t o  the start of boundary-layer t rans i t ion .  
correlation a l so  was good with the  values predicted by turbulent theory 
f o r  surface s t a t ions  downstream from the 45O stat ion.  

umbers (based on model spherical diameter) of 4.25 X 106 and 

Good correla- 

The 

INTRODUcff ION 

The present investigation w a s  conducted t o  determine the e f f ec t s  

In that investigation, wind- 
of surface roughness on the heat-transfer dis t r ibut ion over the p l a s t i c  
sphere-ellipsoid models of reference 1. 
tunnel airstream contamination roughened the model surfaces t o  a degree 
which was believed t o  have affected the location of boundary-layer trn- 
s i t i on  and, hence, the region of maximum aerodynamic heating input. 
Inasmuch as  instrumentation l w t a t i o n s  imposed on the p l a s t i c  models 
by s t ruc tura l  considerations precluded d i rec t  measurement of the heat- 
t ransfer  dis t r ibut ions,  s t e e l  models having different  surface roughnesses 
were constructed and tes ted.  
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Four models were tested simultaneously in the Langley 9- by 6-foot 
thermal structures tunnel a t  a Mach number of 3.0, at free-stream Reynolds 
numbers (based on model spherical diameter) of 4.23 x 10 
and at a stagnation temperature of 6500 F. 
instrumented w i t h  thermocouples i n  order t o  obtain heat-transfer data, and 
the fourth model w a s  used t o  obtain pressure distributions.  The pressure- 
dis t r ibut ion model and one heat-transfer model had a surface f in i sh  of 
5 microinches. The other heat-transfer models were finished t o  average 

order t o  cover the range of surface roughness conditions estimated fo r  
the p l a s t i c  models of reference 1. 
resu l t s  are presented herein. 

6 6 and 2.76 x 10 , 
Three of the models were 

-surface roughness values of 100 and 200 microinches, respectively, i n  

A discussion and analysis of the 

SYMBOLS 

cP 

Cm 

cP 

D 

h 

k 

NNU 

NPr 

N s t  

P 

9 

RD 

RS 

pressure coefficient 

specific heat of model w a l l  material 

specific heat of air at constant pressure 

model spherical diameter 

9, 
T r  - % 

l oca l  heat-transfer coefficient,  

thermal conductivity f o r  air 

Nusselt number, - hD 

Prandtl number, - cPp 

k 

k 

h Stanton number, - 
PVCp 

pre s sure 

heat flow rate per u n i t  area 

Reynolds number whose character is t ic  length i s  D, @ 

loca l  Reynolds number, E 
P 

w 
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r 

S 

l oca l  radius perpendicular t o  model longitudinal axis 

surface distance from stagnation point 

T temperature 

t t i m e  

' v  velocity 

W specif ic  weight of model w a l l  material 

X ax ia l  distance from stagnation point 

veloci ty  gradient along the surface, b L  
as P 

e angular distance around models measured from the stagnation 
point in spherical polar coordinate system 

P absolute viscosi ty  of air  

P mass density of a i r  

I- model w a l l  thickness 

Sub scr ip t  s : 

D parameter based on model spherical diameter as character is t ic  
length 

2 l oca l  free-stream conditions evaluated a t  outer edge of 
boundary layer  

0 i n i t i a l  conditions 

r recovery, surface conditions 

S parameter based on surface distance as character is t ic  length 

t stagnation conditions 

W outside wall of model 

0 free-stream condi t ims evaluated immediately behind bow 
shock wave 

00 free-stream conditions ahead of shock wave 
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SPECIMENS, APPAFWIUS, AND TESTS 

Principal model dimensions are shown i n  figure 1. The models w e r e  
machined t o  the same size and prof i le  as the p la s t i c  sphere-ellipsoid 
models of reference 1. 
with a f l a r e  angle of approximately 5 O  which extended t o  a base diameter 
of 5.75 inches. Model w a l l  thickness w a s  0.030 inch fo r  the  heat-transfer 
models and approximately 0.12 inch f o r  the pressure model. L 
model wall-thickness variations were held w i t h i n  s.001 inch. The outer 1 
surfaces of two of the heat-transfer models were sandblasted t o  average 3 
roughnesses of approximately 100 and 200 microinches, respectively. The 9 
outer surfaces of the t h i r d  heat-transfer model and the pressure model 3 
were polished t o  a f in i sh  of approximately 5 microinches. Average rough- 
ness heights of t he  model surfaces were measured w i t h  a Physicists Research 
Company Profilometer. In order t o  prevent large changes in  model surface 
roughness during the tests, the  models were machined from a hard material 
(SAE 1020 carbon steel). Precautions were also taken t o  minimize the  
mount of foreign par t ic les  i n  the airstream by the ins ta l la t ion  of a f ine  
mesh screen at the upstream end of the tunnel nozzle entrance cone. 
nozzle and test-section areas were also vacuum cleaned p r io r  t o  each tes t  
t o  remove dust and sand t h a t  m i g h t  have been sucked in to  the tunnel during 
the shutdown period of  the previous t e s t .  

Integral. w i t h  the models w a s  a conical sk i r t  

Heat-transfer 

The 

Instrumentation f o r  the heat-transfer models consisted of 14 
No. 30 gage iron constantan thermocouples spot-welded t o  the inner sur- 
face of each model. 
1-80' apart  emanating from the stagnation point. 
s ta t ion locations are tabulated in  figure 1. 
model contained 18 pressure o r i f i ce s  0.070 inch i n  diameter. E i g h t  
o r i f ices  were arranged i n  a sp i r a l  of one revolution around the model 
and were located at  the  surface s ta t ions tabulated i n  figure 1. A t  
s ta t ions 1.00 and 2.27 and on the conical sk i r t ,  there were four or i f ices  
equally spaced around the circumference. 
were recorded by means of a high-speed d i g i t d  magnetic tape recording 
system. 

The thermocouples were staggered along two meridians 
Thermocouple surface 

The pressure-distribution 

Model pressures and temperatures 

T e s t  Fac i l i t y  

The tests were conducted i n  the Langley 9- by 6-foot thermal 
structures tunnel, an intermittent supersonic blowdown f a c i l i t y  exhausting 
t o  the atmosphere. 
and stored i n  a large tank f i e l d  at a pressure of 450 pounds per square 
inch absolute. 
a i r  from the storage f i e l d  t o  provide preset  stagnation pressures from a 

A i r  f o r  the f a c i l i t y  is  dried t o  a dew-point of -40° F 

Four quick-acting rotary valves automatically control the 
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minimum s ta r t ing  pressure of 120 pounds per square inch absolute t o  a 
maximum of 200 pounds per square inch absolute. 
up t o  approximately 660° F are obtained by passing the air through a 
s ta inless-s teel  heat exchanger which i s  preheated by an o i l - f i red  indirect  
air heater. The air then passes through a two-dimensional supersonic 
nozzle designed f o r  a tes t  section Mach number of 3.0. 

Stagnation temperatures 

The t e s t  section i s  6 feet high, 8 f e e t  9 inches wide, and 10 feet 
Calibration tests have shown that the  maximum deviation i n  t e s t  long. 

section Mach number i s  l e s s  than 1.0 percent. 
times available in the t e s t  section are given in  the following table: 

Flow conditions and running 

3.0 

j 

__ -___ 

Dynamic pressure, lb/sq f t  . . . . . . . . . 3,000 t o  5,000 
-+ 

[ M a x i m u m  running times fo r  constant pt, sec . 
____ I - -.- _____ __. 

The lower stagnation temperature l imi t  of 300' F i s  imposed t o  
avoid the poss ib i l i ty  of condensation in  the t e s t  section. The running 
t i m e s  l i s t e d  are the m a x i m u m  times f o r  which e i ther  the stagnation pres- 
sure o r  stagnation temperature can be held constant. Running times f o r  
which stagnation temperature i s  held constant are based on a temperature 
drop of not more than loo F. All times shown i n  the table are exclusive 
of the s ta r t ing  and shutdown periods of 2 seconds and 7 seconds, respec- 
t ively.  
and subjects the t e s t  specimens t o  unsteady loads considerably i n  excess 
of the aerodynamic loads applied under test  conditions. 

During these periods, the f low separates from the  nozzle w a l l s  

Model Ins ta l la t ion  

All four models were tes ted  simultaneously. Each model w a s  attached 
t o  a cylindrical  mounting bucket a t  the  end of a short  s t r u t  as shown i n  
figure 2. 
section w a l l  w i t h  t he  thermocouples oriented in  a ve r t i ca l  plane. The 
pressure model w a s  mounted off a side w a l l .  
the same tunnel longitudinal s ta t ion at zero angle of a t tack and yaw 
w i t h  respect t o  the tunnel longitudinal center l i ne .  

The heat-transfer models were mounted from the umer  test- 

A l l  models were located at  
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Test Conditions 

Two t e s t s  were performed. T e s t  conditions w e r e  selected t o  cover 
the l i m i t s  of the  range of conditions imposed during the  t e s t s  of ref- 
erence 1. 
eter) were 4.25 x 106 and 2.76 x 106. 
202 and 132 lb/sq in.  abs, and the stagnation temperature w a s  6590 F. 
The duration of test  conditions f o r  the high Reynolds number test  w a s  
18.5 seconds, whereas the  lower Reynolds number permitted extending 
t i i s  period t o  26.2 seconds. 

Free-stream Reynolds numbers (based on model spherical diam- 
Tunnel stagnation pressures were 

These values are exclusive of the s ta r t ing  
and shutdown periods of 2 seconds and 7 seconds, respectively. L 

1 
3 
9 
3 

RESULTS AND DISCUSSION 

The condition of the model surfaces a f t e r  the tests showed tha t  the  
airstream contamination had largely been eliminated. 
taken on the heat-transfer and pressure model with an i n i t i a l  surface 
roughness of 5 microinches showed that the surface f in i sh  changed by only 
20 microinches. 

Profilometer readings 

Model Pressures 

Pressures measured along the sphere-ellipsoid surface and conical 
s k i r t  at  the two free-stream Reynolds numbers of t h i s  investigation are 
shown i n  figure 3 as the  r a t i o  of local  t o  stagnation-point pressure. 
The measured pressures a re  compared with the pressures calculated from 
modified Newtonian theory given by the re la t ion  

2 cos 8 - 
cP - Cp,a 

A s  shown i n  figure 3 ,  the  measured pressures are closely approximated 
by the  theoret ical  values over most of the surface. Consequently, 
isentropic flow re la t ions  and the modified Newtonian pressure dis t r ibu-  
t ion  were used i n  calculating the  loca l  flow conditions required in  the 
analysis of the heat-transfer data discussed i n  the appendix. 

Temperature Distributions 

Temperature data were obtained from a l l  three heat-transfer models 
during the  high Reynolds number test ,  but extensive instrumentation 
system fa i lu re s  occurred i n  both the  smooth model and the model with a 
surface roughness of 100 microinches during the  low Reynolds number 
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t e s t .  
face roughness of 200 microinches are reported fo r  the low Reynolds num- 
ber tes t .  

Consequently, only the data obtained from the model w i t h  a sur- 

Typical surface-temperature dis t r ibut ions obtained from each model 
at various t i m e s  during the high Reynolds number test  are shown i n  f ig-  
ure 4. The sharp rise i n  temperature noted downstream from the stagna- 
t ion  point i n  figure 4 i s  character is t ic  of boundary-layer t rans i t ion  
t b  turbulent f law.  As the t e s t  progressed, the peak in  the  curves 
gradually diminished t o  the re la t ive ly  f lat  dis t r ibut ion shown fo r  
t = 18 seconds. 
before the end of test  conditions. 

In  general, equilibrium temperatures were achieved jus t  

The Effect of Surface Roughness on 

Heat-Transfer Distribution 

Experimental heat-transfer r e su l t s  obtained ear ly  i n  the t e s t s  from 
each model are plot ted i n  figure 5 as the dis t r ibut ion along the  surface 

of the laminar heat-transfer parameter, NSt ,m\ jR~,m.  The airflow prop- 
e r t i e s  used were the undisturbed free-stream conditions, and model 
spherical diameter w a s  taken as the character is t ic  length. Also shown 
in  figure 5 are theoret ical  curves f o r  both laminar and turbulent boundary 
layers.  The curves w e r e  calculated from the modifications of Sibulkin's 
and Falkner's theories given i n  references 2 and 3. The procedures used 
in  determining the  experimental heat-transfer coefficients and theoret ical  
values of the parameter are discussed in  the appendix. Errors i n  the 
experimental heat-transfer coefficients introduced by conduction e f fec ts  
were evaluated at surface s ta t ions where these ef fec ts  were considered 
t o  be greatest  by using the method given i n  reference 3 .  Since the m a x i -  
mum change in  heat-transfer coefficient at these s ta t ions varied from 
approximately 6 t o  8 percent and the average change at other s ta t ions w a s  
l e s s  than 4 percent, the ef fec ts  of conduction were neglected. 
losses due t o  radiation were also evaluated and considered s m a l l  enough 
t o  neglect. 

H e a t  

The experimental heat-transfer dis t r ibut ions shown i n  figure 5 
indicate that all three models experienced t rans i t ion  t o  turbulent f l a w  
as evidenced by the  abrupt departure from the trend of the  laminar theory 
curve. The most evident e f fec t  of surface roughness i s  the  familiar 
upstream shift i n  the location of boundary-layer t ransi t ion.  For these 
models, the start of t rans i t ion  moved from the v ic in i ty  of the sphere- 
e l l ipso id  junction (a s ta t ion  45O from the stagnation point) on the 
smooth model t o  a position j u s t  downstream from the stagnation point 
on the  roughest model. The indicated sh i f t  i n  the location of the start 
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of t rans i t ion  between the models with surface roughnesses of 5 and 
100 microinches w a s  greater  than the  s h i f t  shown between the models with 
surface rougbnesses of 100 and 200 microinches. Accompanying t h i s  upstream 
s h i f t  i n  the location of t rans i t ion  due t o  roughness i s  an increase i n  p e a  
heating rates. 
these heating rates at ta ined values approximately twice the stagnation- 
point value. 

For the  model w i t h  a surface roughness of 200 microinches, 

- The good agreement between the  experimental values and the  values 
obtained from laminar theory up t o  the  s t a r t  of t rans i t ion ,  as seen i n  
figure 5, indicates the adequacy of the theory f o r  predicting laminar L 
heat-transfer dis t r ibut ions f o r  the bodies tes ted  in  t h i s  investigation. 1 
Also, the agreement between experimental values and the values given by 3 
turbulent theory i s  good at  surface s ta t ions downstream from the sphere- 9 
e l l ipso id  junction. 3 

In the  present investigation, stagnation-point values of the 

parameter, Nst,m\IC1,, were not obtained f o r  the  two roughest models 
(see f ig .  5) ,  and a comparison cannot be made t o  ascertain differences 
i n  stagnation-point heating due t o  roughness. However, a d i rec t  compari- 
son of the values of the heat-transfer parameter on the three models 
can be made i n  figure 5(a) at surface s ta t ion,  

stream from the stagnation point. 
e t e r ,  “ S t , w l  F--- D,w, i s  highest f o r  the roughest model, t h i s  may indi- 

cate only tha t  the flow i s  not laminar a t  that station. 
t o  f igures  5(a) and 5(b) shows an increase i n  the heat-transfer parameter 
w i t h  increase i n  free-stream Reynolds number f o r  the  roughest model 

(200 microinches surface roughness) at surface station, s = 0.056. 
D 

In reference 4, an increase i n  the laminar heating ra te  w i t h  increase 
i n  free-stream Reynolds number w a s  observed on a roughened hemisphere- 
cone-cylinder. For the  present investigation, however, there i s  no 
assurance that an increase i n  the laminar heating rate i s  represented 
f o r  the t e s t  made at the higher Reynolds number. 

2 = O.O$, j u s t  down- D 
Although the value of the param- 

Reference 

Boundary-Layer Transition Reversal 

In  determining experimental loca l  heat-transfer coefficients,  two 
values were obtained f o r  each model at surface s ta t ions i n  the v ic in i ty  
of i n i t i a l  peak heating rates shown i n  figure 5. For these stations,  a 
decrease i n  heat-transfer coefficient occurred when the model w a l l  tem- 
perature a t ta ined a cer ta in  value. The w a l l  temperature a t  which the  
reduction in  heat-transfer coefficient took place increased as the  sur- 
face distance measured from the stagnation point increased. This e f fec t  
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i s  i l l u s t r a t e d  i n  figure 6, where the wall-to-free-stream temperature 
r a t i o  f o r  reduction i n  heating rate i s  plot ted against free-stream 
Reynolds number with surface di'stance, 
A s  shown i n  f igure 6, the wall-to-free-stream temperature r a t i o  varied 
from approximately 2.33 t o  2.67, depending on the  surface roughness and 
surface distance. For the model with a surface roughness of 200 micro- 
inches, the w a l l  temperature r a t i o  f o r  reduction i n  heating r a t e  w a s  
found independent of the free-stream Reynolds number based on model 
spherical diameter and also appeared t o  approach a constant value. 

s, as character is t ic  length. 

The change i n  heat-transfer dis t r ibut ions due t o  the lower heating 

N S t , m d G ,  obtained l a t e r  i n  the tests are  shown as the closed 
rates i s  shown i n  figure 7, where the values of the param- 
e t e r ,  
symbols. For the smooth model ( 5  microinches surface roughness) a t  
R D , ~  = 4.25 x lo6 ( f i g .  7 (c) )  and the roughest model (200 microinches 
surface roughness) at  R D , ~  = 2.76 x lo6 ( f ig .  7(d)) ,  the  reduction i n  
heat-transfer coefficient w a s  suff ic ient  t o  conclude t h a t  the flow had 
changed from turbulent t o  laminar. Thus, the t rans i t ion  point moved 
downstream a f t e r  an increase in  model wall temperature. A comparison 
of the conditions at  which the downstream movement of t rans i t ion  f i r s t  
occurred on the smooth model t e s t ed  at  the  high Reynolds number (see 
f ig .  7 (c) ,  surface s ta t ion 

tes ted  at  the lower Reynolds number (see f i g .  7(d),  surface s ta-  
t i on  

peratures at these two surface s ta t ions were nearly the same. 

2 = 0.333) w i t h  those of the roughest model D 

2 = 0.167) showed tha t  the loca l  pressures and model w a l l  tem- 
D 

A downstream s h i f t  i n  the location of t rans i t ion  on smooth blunt 
bodies with increase i n  surface temperature w a s  also observed during 
t e s t s  reported i n  references 4 t o  6. 
reversal, has been the  subject of considerable in t e re s t  (see, f o r  example, 
refs .  4 t o  9) ,  and i t s  cause i s  not yet thoroughly understood. 
point of controversy i s  centered on whether the apparent boundary-layer 
destabil izing e f fec t  of extreme surface cooling i s  of a nonroughness 
origin. In reference 6, it w a s  concluded, 
on the basis of calculations of the minimum roughness height required t o  
excite t ransi t ion,  t ha t  roughness w a s  not the dominant fac tor  i n  causing 
the i n i t i a l l y  turbulent flow during the hemisphere t e s t s  of t ha t  invest i -  
gation. On the other hand, in  reference 7 it w a s  shown experimentally 
tha t  t rans i t ion  can result d i rec t ly  from the e f f ec t s  of roughness i n  a 
cooled boundary layer.  For the  present investigation, it i s  clear  t ha t  
the  combination of surface roughness and boundary-layer cooling tended 
t o  promote ear ly  t rans i t ion  t o  turbulent flow and nu l l i fy  the advantages 
a t t r ibu ted  t o  the bluntness of the model shape i n  reducing local  
temperatures . 

This behavior, known as t rans i t ion  

The chief 

(See, f o r  example, re f .  8.) 
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CONCLUSIONS 

An investigation t o  determine the  heat-transfer dis t r ibut ion on a 
sphere-ellipsoid body f o r  three surface roughness conditions w a s  con- 
ducted i n  the Langley 9- by 6-foot thermal structures tunnel. Three 
thermocouple instrumented steel models were constructed with surf ace 
f inishes  of 5, 100, and 200 microinches, respectively. The models w e r e  
t es ted  simultaneously a t  Mach number 3.0, free-stream Reynolds numbers 
(based on model spherical diameter) of 4.25 x 10 6 and 2.76 x lo6, and 
a stagnation temperature of approximately 6.50~ F. 
measured on a fourth model. The t e s t  r e su l t s  indicated the following: 

Local pressures were 

1. A s  surface roughness increased, the location of the  start of 
boundary-layer t rans i t ion  shif ted from a s ta t ion 4 5 O  from the stagnation 
point on the smooth model ( 5  microinches surface roughness) t o  a posit ion 
jus t  downstream from the stagnation point on the roughest model 
(200 microinches surface roughness). A greater difference in  the location 
of t rans i t ion  w a s  observed between the smooth model ( 5  microinches surface 
roughness) and the model with a surface roughness of 100 microinches than 
between the two roughest models (100 and 200 microinches surface roughness). 
The differences i n  location of the start of t rans i t ion  due t o  roughness 
were accompanied by an increase i n  peak heating r a t e s  which attained values 
approximately twice the stagnation-point value fo r  the roughest model. 

2. A s  the  model surface temperature reached certain values, a 
decrease i n  heat-transfer coefficient occurred on all models at  surface 
s ta t ions i n  the v i c in i ty  of i n i t i a l  peak heating ra tes .  
free-stream temperature r a t i o  at  which the reduction in  heating r a t e  
occurred increased as the  surface distance from the stagnation point 
increased and varied from approximately 2.33 t o  2.67. The reduction i n  
heat-transfer coefficient w a s  suff ic ient  t o  conclude tha t  the location 
of boundary-layer t rans i t ion  had moved downstream on the smsoth model 
f o r  the high Reynolds number t e s t  and on the roughest model f o r  the low 
Reynolds number test .  

The wall-to- 

3. In general, the measured pressure dis t r ibut ions over the model 
w e r e  i n  good agreement w i t h  those predicted by modified Newtonian theory. 

4. Theoretical. heat-transfer dis t r ibut ions f o r  laminar flow using 
modifications of Sibulkin's  theory were i n  good agreement w i t h  experi- 
mental dis t r ibut ions up t o  the start of t ransi t ion.  Also, theoret ical  
heat-transfer values f o r  turbulent flow using a modification of Falkner's 
theory w e r e  i n  good agreement with experimental values at surface s ta t ions 
downstream from the sphere-ellipsoid junction. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va. ,  April 13, 1961. 
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DATA REDUCTION AND THEORIES 

Experimental Heat-Transfer Coefficients 

Local heat-transfer coefficients were determined from the slope 
of the s t ra ight- l ine var ia t ion of the measured temperature plot ted 
against i t s  time ra t e  of change in the heat-balance equation 

where h and Tr a re  assumed constant f o r  a given se t  of t e s t  condi- 
t ions.  In equation (1) T r  i s  the intercept on the Tw axis when TW 

In order t o  ensure against using data inf lu-  i s  plot ted against - at - 
enced by i r r egu la r i t i e s  i n  test  conditions, no data were considered i n  
the analysis at  times below 2.5 seconds. A t  some surface stations,  two 

straight-l ine variations of Tw w i t h  - were obtained as shown i n  

figure 8. 
were computed. This indicated the existence of the t rans i t ion  reversal  
phenomenon i n  these t e s t s  as shown i n  figure 7. The value of h obtained 
i n  t h i s  manner w a s  checked by computing temperature var ia t ions w i t h  time 
a t  each s ta t ion  from the solution t o  the d i f f e ren t i a l  equation (1) given 
by the re la t ion  

dtW 

at  
Using the slopes of each s t ra ight  l i ne ,  two values of h 

ht -- 

The difference between computed and measured temperatures w a s  always 
within 2 percent of ( T r  - To).  
reduction were Cm = 0.129 Btu/(lb) (OF) and w = 490 lb/cu f t .  

Physical constants used i n  the data 

Heat-Transfer Parameter 

Stagnation point.- The curves labelled "laminar theory" i n  figures 5 
and 7 were computed from modifications of Sibulkin's  theory given i n  
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reference 2 f o r  a hemisphere-cylinder. A stagnation-point solution w a s  
presented i n  reference 2 i n  terms of the Nusselt number and Reynolds 
number based on spherical diameter and physical properties of the  air  
evaluated immediately behind the normal shock. The theoret ical  heat- 
t ransfer  parameter obtained i s  a function of Prandtl number and velocity 
gradient along the surface as follows: 

L 
1 
3 

By expressing t h i s  solution as the product of the Stanton number and 
the square root of the Reynolds number, equation (3) becomes 

9 
3 

Transformation t o  undisturbed free-stream conditions required multiplying 
both sides of equation (4) by the product, 

Equation (4) can then be writ ten as 

Using isentropic-flow re la t ions  and a value of 

from modified Newtonian theory, a stagnation-point value of 
N s t J w \ i &  = 3.44 i s  obtained. 

computed a t  the stagnation point of a hemisphere-cone-cylinder i n  
reference 4. 

JE = 4.97 determined 
va 

"his value i s  i n  agreement with tha t  



Laminar flow.- In reference 2, a re la t ion  i s  given f o r  t he ' l oca l  
Stanton number which should be v d i d  f o r  s ta t ions up t o  4 5 O  from the 
stagnation point o r  = 0.393. The relat ion,  a l so  based on a.modifica- 

D 
t i on  of Sibulkin's  theory, uses physical properties of t he  air evaluated 
a t  the outer edge of the boundary layer  and as character is t ic  length 
as follows: 

s 

Transformation t o  undisturbed free-stream conditions and spherical diam- 
e t e r  as character is t ic  length yields 

The laminar theory curves shown in  figures 5 and 6 were calculated using 
equations ( 5 )  and (7). 
isentropic-flow relat ions and the modified Newtonian pressure 
distributions.  

Local flow conditions were evaluated from 

Turbulent f low.-  The theoret ical  heat-transfer dis t r ibut ions f o r  
turbulent flow shown i n  figures 5 and 6 were obtained from a modifica- 
t i o n  of Falkner's theory given i n  reference 3 f o r  a sphere. The rela- 
t i on  is  given as the product of the loca l  Stanton number and \TRs 
follows: 

as 

In t h i s  expression, the physical properties of the air are evaluated at 
the w a l l  w i t h  s as character is t ic  length. Transformation t o  D as 
character is t ic  length and t o  undisturbed free-stream conditions yields  
the equation 



For the turbulent theory curves shown i n  figures 3 and 6, the local  
flow conditions were determined from isentropic-flow relat ions and the  
mod if ied Newtonian pressure dis t r ibut ion . 

L 
1 
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s .250 b500 .750 bl.OOO 1.250 1.500 bl.750 2.024 b2.273 2.509 b3.068 
x 0 .014 -055 .I24 .219 .338 .482 .647 -850 1,050 1.250 1.750 
r 0 .250 .496 ,736 .967 1.187 1.391 1.579 1.762 1.911 2.037 2.286 

T =  .030 (heat-transfer model) 
T =  _I25 (pressure-distribution model) 

conical skirt juncture 

b3.705 b4.537 
2.350 3.150 
2.501 2.690 

sphere-eilipsoi 
juncture 

5.75 

3.903+ 

7.66 

'Surface stations on pressure-distrlbution model with 4 equally spaced orifices. 

Figure 1. - Dimensions of model and instrumentation locations. 
Dimensions are in inches. 
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L-60-1502. 1 
Figure 2.- Model ins ta l la t ion  i n  test  section viewed from upstream. 
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Figure 3 . -  Variation of the loca l  pressure ratio along the surface. 
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(a) 5 microinches; RD,,, = 4.25 x 10 6 . 
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(b) 100 microinches; R D , ~  = 4.25 X 10 6 . 
Figure 4. - Surfaee temperature dis t r ibut ions obtained at varL3us times 

from three sphere-ellipsoid models finished t o  different  surface 
roughness heightsj  times shown are based on t h e  zero equal t o  
0.5-second t e s t  time; Mach number 3.0; Tt = 650O B. 
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(e) 200 microinches; R D , ~  = 4.25 X lo6. 
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(a) 200 microinches; RD,m = 2.76 x lo6. 
Figure 4. - Concluded. 
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Turbulent theory (ref. 3) 
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(a) RD,. = 4.25 x lo6; pt = 202 psia;  Tt = 650O F. 

0 

6 

2 

0 . 2  .4 .6 .a I .o 

S - 
D 

(b) RD,. = 2.76 x lo6; pt = 132 psia; Tt = 650O F. 

Figure 5.- The ef fec t  of surface roughness on the i n i t i a l  heat-transfer 
dis t r ibut ion along a sphere-ellipsoid body at Mach number 3.0. 
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Figure 6.- Variation of model wall temperature fo r  reduction i n  heating 
r a t e  with free-stream Reynolds number based on surface distance from 
the stagnation point on sphere-ellipsoid bodies for different  surface 
roughness conditions; spherical radius, 2.25 inches. 
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(a) 200 microinches. 
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(b) 100 microinches. 

Figure 7.- The e f fec t  of increasing w a l l  tem’perature on the local  heat 
t ransfer  t o  sphere-ellipsoid bodies w i t h  d i f ferent  surface roughness 
conditions. 
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Figure 7. - Concluded. 
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Figure 8. - Method f o r  determining experimental heat-transfer coefficients 
from thermocouple data; i l l u s t r a t ion  of t rans i t ion  from turbulent t o  
laminar flow of the smooth model at s = 2.273 inches. 
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